В свое время я услышал термин “Big Data” от Германа Грефа (глава Сбербанка). Мол, они сейчас у себя активно работают над внедрением, потому что это поможет им сократить время работы с каждым клиентом. Второй раз я столкнулся с этим понятием в интернет-магазине клиента, над которым мы работали и увеличивали ассортимент с пары тысяч до пары десятков тысяч товарных позиций. Третий раз, когда увидел, что в Yandex требуется аналитик big data.  Тогда я решил поглубже разобраться в этой теме и заодно написать статью, которая расскажет что это за термин такой, который будоражит умы ТОП-менеджеров и интернет-пространство

VVV или VVVVV

Обычно любую свою статью я начинаю с пояснения что же это за термин такой. Эта статья не станет исключением. Однако, это вызвано прежде всего не желанием показать какой я умный, а тем, что тема по-настоящему сложная и требует тщательного пояснения. К примеру, Вы можете почитать что такое big data в Википедии, ничего не понять, а потом вернуться в эту статью, чтобы все таки разобраться в определении и применимости для бизнеса. Итак, начнём с описания, а потом к примерам для бизнеса.

Big data это большие данные. Удивительно, да? Реально, с английского это переводится как “большие данные”. Но это определение, можно сказать, для чайников.

Важно. Технология big data это подход/метод обработки большего числа данных для получения новой информации, которые тяжело обработать обычными способами. Данные могут быть как обработанными (структурированными), так и разрозненными (то есть неструктурированными). 

Сам термин появился относительно недавно. В 2008 году в научном журнале этот подход предсказывался как нечто необходимое для работы с большим объемом информации, которая увеличивается в геометрической прогрессии. К примеру, ежегодно информация в интернете, которую нужно хранить, ну и само собой обрабатывать, увеличивается на 40%. Еще раз. +40% каждый год появляется в интернете новой информации.

Если распечатанные документы понятны и способы обработки их тоже понятны (перенести в электронный вид, сшить в одну папку, пронумеровать), то что делать с информацией, которая представлена в совершенно других “носителях” и других объёмах:

  • интернет-документы;
  • блоги и социальные сети;
  • аудио/видео источники;
  • измерительные устройства;

Есть характеристики, которые позволяют отнести информацию и данные именно к big data. То есть не все данные могут быть пригодны для аналитики. В этих характеристиках как раз и заложено ключевое понятие биг дата. Все они умещаются в три V.

  1. Объем (от англ. volume). Данные измеряются в величине физического объема “документа”, подлежащего анализу;
  2. Скорость (от англ. velocity). Данные не стоят в своем развитии, а постоянно прирастают, именно поэтому и требуется их быстрая обработка для получения результатов;
  3. Многообразие (от англ. variety). Данные могут быть не одноформатными. То есть могут быть разрозненными, структурированным или структурированными частично.

Однако, периодически к VVV добавляют и четвертую V (veracity — достоверность/правдоподобность данных) и даже пятую V ( в некоторых вариантах это — viability — жизнеспособность, в других же это — value — ценность). Где-то я видел даже 7V, которые характеризуют данные, относящиеся к биг дата. Но на мой взгляд это из серии Маркетинг микса 4P (где периодически добавляются P, хотя для понимания достаточно начальных 4-х).

Кому же это надо?

Встает логичный вопрос, как можно использовать информацию (если что, биг дата это сотни и тысячи терабайт)? Даже не так. Вот есть информация. Так для чего придумали тогда биг дата? Какое применение у big data в маркетинге и в бизнесе?

  1. Обычные базы данных не могут хранить и обрабатывать (я сейчас говорю даже не про аналитику, а просто хранение и обработку) огромного количества информации. Биг дата же решает эту главную задачу. Успешно хранит и управляет информацией с большим объемом;
  2. Структурирует сведения, приходящие из различных источников (видео, изображений, аудио и текстовых документов), в один единый, понятный и удобоваримый вид;
  3. Формирование аналитики и создание точных прогнозов на основании структурированной и обработанной информации.

Это сложно. Если говорить просто, то любой маркетолог, который понимает, что если изучить большой объем информации (о Вас, Вашей компании, Ваших конкурентах, Вашей отрасли), то можно получить очень приличные результаты:

  • Полное понимание Вашей компании и Вашего бизнеса со стороны цифр;
  • Изучить своих конкурентов. А это, в свою очередь, даст возможность вырваться вперед за счет преобладания над ними;
  • Узнать новую информацию о своих клиентах.

И именно потому что технология big data дает следующие результаты, все с ней и носятся. Пытаются прикрутить это дело в свою компанию, чтобы получить увеличение продаж и уменьшение издержек. А если конкретно, то:

  • Увеличение кросс продаж и дополнительных продаж за счет лучшего знания предпочтений клиентов;
  • Поиск популярных товаров и причин почему их покупают (и наоборот);
  • Усовершенствование продукта или услуги;
  • Улучшение уровня обслуживания;
  • Повышение лояльности и клиентоориентированности;
  • Предупреждение мошенничества (больше актуально для банковской сферы);
  • Снижение лишних расходов.

Самый распространенный пример, который приводится во всех источниках — это, конечно ж, компания Apple, которая собирает данные о своих пользователях (телефон, часы, компьютер). Именно из-за наличия эко-системы корпорация столько знает о своих пользователях и в дальнейшем использует это для получения прибыли. Эти и другие примеры использования Вы можете прочитать в любой другой статье кроме этой.

Идём в будущее

Я же Вам расскажу о другом проекте. Вернее о человеке, который строит будущее, используя big data решения. Это Илон Маск и его компания Tesla. Его главная мечта — сделать автомобили автономными, то есть Вы садитесь за руль, включаете автопилот от Москвы до Владивостока и… засыпаете, потому что Вам совершенно не нужно управлять автомобилем, ведь он все сделает сам. Казалось бы, фантастика? Но нет! Просто Илон поступил гораздо мудрее, чем Google, которые управляют автомобилями с помощью десятков спутников. И пошел другим путем:

  1. В каждый продаваемый автомобиль ставится компьютер, который собирают всю информацию. Всю — это значит  вообще всю. О водителе, стиле его вождения, дорогах вокруг, движении других автомобилей. Объем таких данных доходит до 20-30 ГБ в час;
  2. Далее эта информация по спутниковой связи передается в центральный компьютер, который занимается обработкой этих данных;
  3. На основе данных big data, которые обрабатывает данный компьютер, строится модель беспилотного автомобиля.

 К слову, если у Google дела идут довольно скверно и их автомобили все время попадают в аварии, то у Маска, за счет того что идет работа с big data, дела обстоят гораздо лучше, ведь тестовые модели показывают очень неплохие результаты. 

Но… Это все из экономики. Что мы все о прибыли, да о прибыли? Многое, что может решить биг дата, совершенно не связано с заработком и деньгами. Статистика Google, как раз таки основанная на big data, показывает интересную вещь. 

Перед тем как медики объявляют о начале эпидемии заболевания в каком-то регионе, в этом регионе существенно возрастает количество поисковых запросов о лечении данного заболевания. Таким образом, правильное изучение данных и их анализ может сформировать прогнозы и предсказать начало эпидемии (и, соответственно, ее предотвращение) гораздо быстрее, чем заключение официальных органов и их действия.

Применение в России

Однако, Россия как всегда немного “притормаживает”. Так само определение big data в России появилось не более, чем 5 лет назад (я сейчас именно про обычные компании). И это не смотря на то, что это один из самых быстрорастущих рынков в мире (наркотики и оружие нервно курят в сторонке), ведь ежегодно рынок программного обеспечения для сбора и анализа big data прирастает на 32%.

Чтобы охарактеризовать рынок big data в России, мне вспоминается одна старая шутка. Биг дата это как секс до 18 лет. Все об этом говорят, вокруг этого много шумихи и мало реальных действий, и всем стыдно признаться, что сами-то они этим не занимаются. 

И правда, вокруг этого много шумихи, но мало реальных действий. Хотя известная исследовательская компания Gartner уже в 2015 году объявила, что биг дата это уже не возрастающий тренд (как кстати и искусственный интеллект ), а вполне самостоятельные инструменты для анализа и развития передовых технологий.

Наиболее активные ниши, где применяется big data в России, это банки/страхование (недаром я начал статью с главы Сбербанка), телекоммуникационная сфера, ритейл, недвижимость и… государственный сектор. Для примера расскажу более подробно о паре секторов экономики, которые используют алгоритмы big data.

Банки

Начнём с банков и той информации, которую они собирают о нас и наших действиях. Для примера я взял ТОП-5 российских банков, которые активно инвестируют в big data:

  1. Сбербанк;
  2. Газпромбанк;
  3. ВТБ 24;
  4. Альфа Банк;
  5. Тинькофф банк.

Особенно приятно видеть в числе российских лидеров Альфа Банк. Как минимум, приятно осознавать, что банк, официальным партнером которого ты являешься, понимает необходимость внедрения новых маркетинговых инструментов в свою компанию. Но примеры использования и удачного внедрения big data я хочу показать на банке, который мне нравится за нестандартный взгляд и поступки его основателя.

Я говорю про Тинькофф банк. Их главной задачей стояла разработка системы для анализа больших данных в режиме реального времени из-за разросшейся клиентской базы и, как следствие, огромных требований к обработке хранящейся информации. Результаты: время внутренних процессов сократилось минимум в 10 раз, а для некоторых – более, чем в 100 раз.

Ну и небольшое отвлечение. Знаете почему я заговорил про нестандартные выходки и поступки Олега Тинькова? Просто на мой взгляд именно они помогли ему превратиться из бизнесмена средней руки, коих тысячи в России, в одного из самых известных и узнаваемых предпринимателей современной России. В подтверждение посмотрите это необычное и интересное видео:

Недвижимость

В недвижимости все гораздо сложнее. И это именно тот пример, который я хочу Вам привести для понимания биг даты в пределах обычного бизнеса. Исходные данные:

  1. Большой объем текстовой документации;
  2. Открытые источники (частные спутники, передающие данные об изменениях земли);
  3. Огромный объем неконтролируемой информации в Интернет;
  4. Постоянные изменения в источниках и данных.

И на основе этого нужно подготовить и оценить стоимость земельного участка, например, под уральской деревней. У профессионала на это уйдет неделя.  У Российского общества оценщиков & РОСЭКО, собственно которые и внедрили себе анализ big data с помощью программного обеспечения, уйдет на это не более 30 минут неторопливой работы. Сравните, неделя и 30 минут. Колоссальная разница.

Ну и на закуску

Конечно же огромные объемы информации не могут храниться и обрабатываться на простых жестких дисках. А программное обеспечение, которое структурирует и анализирует данные — это вообще интеллектуальная собственность и каждый раз авторская разработка. Однако, есть инструменты, на основе которых создается вся эта прелесть:

  • Hadoop & MapReduce;
  • NoSQL базы данных;
  • Инструменты класса Data Discovery.

Если честно, я не смогу Вам внятно объяснить чем они отличаются друг от друга, так как знакомству и работе с этими вещами учат в физико-математических институтах.

Зачем тогда я об этом заговорил, если не смогу объяснить? Помните во всех кино грабители заходят в любой банк и видят огромное число всяких железяк, подключенных к проводам? То же самое и в биг дате. К примеру, вот модель, которая является на данный момент одним из самых лидеров на рынке.

Стоимость в максимальной комплектации доходит до 27 миллионов рублей за стойку. Это, конечно, люксовая версия. Я это к тому, чтобы Вы заранее примерили создание big data в своем бизнесе.

Коротко о главном

Вы можете спросить зачем же вам, малому и среднему бизнесу работа с биг дата? На это я отвечу Вам цитатой одного человека: “В ближайшее время клиентами будут востребованы компании, которые лучше понимают их поведение, привычки и максимально соответствуют им”.

Но давайте взглянем правде в глаза. Чтобы внедрить биг дата в малом бизнесе, это надо обладать не только большими бюджетами на разработку и внедрение софта, но и на содержание специалистов, хотя бы таких как аналитик big data и сисадмин. И это я сейчас молчу о том, что у Вас должны быть такие данные для обработки.

Окей. Для малого бизнеса тема почти не применима. Но это не значит, что Вам нужно забыть все что прочитали выше. Просто изучайте не свои данные, а результаты аналитики данных известных как зарубежных, так и российских компаний.

К примеру, зарубежная розничная сеть Target с помощью аналитики по big data выяснила, что беременные женщины перед вторым триместром беременности (с 1-й по 12-ю неделю беременности) активно скупают НЕароматизированные средства. Благодаря этим данным они отправляют им купоны со скидками на неароматизированные средства с ограниченным сроком действия. 

А если Вы ну прям совсем небольшое кафе, к примеру? Да очень просто. Используйте приложение лояльности, где через некоторое время и благодаря накопленной информации, Вы сможете не только предлагать Вашим клиентам релевантные их потребностям блюда, но и увидеть самые непродающиеся и самые маржинальные блюда буквально парой щелчков мышки. 

Отсюда вывод. Внедрять биг дата малому бизнесу вряд ли стоит, а вот использовать результаты и наработки других компаний — обязательно.